direct product, metabelian, soluble, monomial, A-group
Aliases: A4×C22×C4, C24⋊5C12, C25.3C6, (C24×C4)⋊1C3, (C23×C4)⋊4C6, C23⋊4(C2×C12), C22⋊(C22×C12), C2.1(C23×A4), (C23×A4).4C2, C24.26(C2×C6), C23.30(C2×A4), (C2×A4).11C23, C22.17(C22×A4), C23.28(C22×C6), (C22×A4).16C22, (C22×C4)⋊16(C2×C6), SmallGroup(192,1496)
Series: Derived ►Chief ►Lower central ►Upper central
C22 — A4×C22×C4 |
Subgroups: 816 in 317 conjugacy classes, 81 normal (12 characteristic)
C1, C2, C2 [×6], C2 [×8], C3, C4 [×4], C4 [×4], C22, C22 [×7], C22 [×49], C6 [×7], C2×C4 [×6], C2×C4 [×38], C23 [×2], C23 [×6], C23 [×49], C12 [×4], A4, C2×C6 [×7], C22×C4, C22×C4 [×4], C22×C4 [×45], C24 [×7], C24 [×8], C2×C12 [×6], C2×A4, C2×A4 [×6], C22×C6, C23×C4 [×6], C23×C4 [×8], C25, C4×A4 [×4], C22×C12, C22×A4 [×7], C24×C4, C2×C4×A4 [×6], C23×A4, A4×C22×C4
Quotients:
C1, C2 [×7], C3, C4 [×4], C22 [×7], C6 [×7], C2×C4 [×6], C23, C12 [×4], A4, C2×C6 [×7], C22×C4, C2×C12 [×6], C2×A4 [×7], C22×C6, C4×A4 [×4], C22×C12, C22×A4 [×7], C2×C4×A4 [×6], C23×A4, A4×C22×C4
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c4=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >
(1 41)(2 42)(3 43)(4 44)(5 40)(6 37)(7 38)(8 39)(9 35)(10 36)(11 33)(12 34)(13 28)(14 25)(15 26)(16 27)(17 32)(18 29)(19 30)(20 31)(21 47)(22 48)(23 45)(24 46)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(13 29)(14 30)(15 31)(16 32)(17 27)(18 28)(19 25)(20 26)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(5 22)(6 23)(7 24)(8 21)(13 29)(14 30)(15 31)(16 32)(17 27)(18 28)(19 25)(20 26)(37 45)(38 46)(39 47)(40 48)
(1 11)(2 12)(3 9)(4 10)(5 22)(6 23)(7 24)(8 21)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 17 8)(2 18 5)(3 19 6)(4 20 7)(9 25 23)(10 26 24)(11 27 21)(12 28 22)(13 48 34)(14 45 35)(15 46 36)(16 47 33)(29 40 42)(30 37 43)(31 38 44)(32 39 41)
G:=sub<Sym(48)| (1,41)(2,42)(3,43)(4,44)(5,40)(6,37)(7,38)(8,39)(9,35)(10,36)(11,33)(12,34)(13,28)(14,25)(15,26)(16,27)(17,32)(18,29)(19,30)(20,31)(21,47)(22,48)(23,45)(24,46), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,29)(14,30)(15,31)(16,32)(17,27)(18,28)(19,25)(20,26)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (5,22)(6,23)(7,24)(8,21)(13,29)(14,30)(15,31)(16,32)(17,27)(18,28)(19,25)(20,26)(37,45)(38,46)(39,47)(40,48), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,17,8)(2,18,5)(3,19,6)(4,20,7)(9,25,23)(10,26,24)(11,27,21)(12,28,22)(13,48,34)(14,45,35)(15,46,36)(16,47,33)(29,40,42)(30,37,43)(31,38,44)(32,39,41)>;
G:=Group( (1,41)(2,42)(3,43)(4,44)(5,40)(6,37)(7,38)(8,39)(9,35)(10,36)(11,33)(12,34)(13,28)(14,25)(15,26)(16,27)(17,32)(18,29)(19,30)(20,31)(21,47)(22,48)(23,45)(24,46), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(13,29)(14,30)(15,31)(16,32)(17,27)(18,28)(19,25)(20,26)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (5,22)(6,23)(7,24)(8,21)(13,29)(14,30)(15,31)(16,32)(17,27)(18,28)(19,25)(20,26)(37,45)(38,46)(39,47)(40,48), (1,11)(2,12)(3,9)(4,10)(5,22)(6,23)(7,24)(8,21)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,17,8)(2,18,5)(3,19,6)(4,20,7)(9,25,23)(10,26,24)(11,27,21)(12,28,22)(13,48,34)(14,45,35)(15,46,36)(16,47,33)(29,40,42)(30,37,43)(31,38,44)(32,39,41) );
G=PermutationGroup([(1,41),(2,42),(3,43),(4,44),(5,40),(6,37),(7,38),(8,39),(9,35),(10,36),(11,33),(12,34),(13,28),(14,25),(15,26),(16,27),(17,32),(18,29),(19,30),(20,31),(21,47),(22,48),(23,45),(24,46)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(13,29),(14,30),(15,31),(16,32),(17,27),(18,28),(19,25),(20,26),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(5,22),(6,23),(7,24),(8,21),(13,29),(14,30),(15,31),(16,32),(17,27),(18,28),(19,25),(20,26),(37,45),(38,46),(39,47),(40,48)], [(1,11),(2,12),(3,9),(4,10),(5,22),(6,23),(7,24),(8,21),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,17,8),(2,18,5),(3,19,6),(4,20,7),(9,25,23),(10,26,24),(11,27,21),(12,28,22),(13,48,34),(14,45,35),(15,46,36),(16,47,33),(29,40,42),(30,37,43),(31,38,44),(32,39,41)])
Matrix representation ►G ⊆ GL5(𝔽13)
12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
8 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 12 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 12 | 12 | 11 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[8,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,12,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,1,0,0,0,12,1,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,1,12,0,0,0,0,11,1] >;
64 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 3A | 3B | 4A | ··· | 4H | 4I | ··· | 4P | 6A | ··· | 6N | 12A | ··· | 12P |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 4 | 4 | 1 | ··· | 1 | 3 | ··· | 3 | 4 | ··· | 4 | 4 | ··· | 4 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 | A4 | C2×A4 | C2×A4 | C4×A4 |
kernel | A4×C22×C4 | C2×C4×A4 | C23×A4 | C24×C4 | C22×A4 | C23×C4 | C25 | C24 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 2 | 8 | 12 | 2 | 16 | 1 | 6 | 1 | 8 |
In GAP, Magma, Sage, TeX
A_4\times C_2^2\times C_4
% in TeX
G:=Group("A4xC2^2xC4");
// GroupNames label
G:=SmallGroup(192,1496);
// by ID
G=gap.SmallGroup(192,1496);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,2,142,530,909]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^4=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations